Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 301
Filter
1.
Journal of Southern Medical University ; (12): 1155-1163, 2023.
Article in Chinese | WPRIM | ID: wpr-987032

ABSTRACT

OBJECTIVE@#To investigate the effect of Porphyromonas gingivalis (Pg) infection on IFNGR1 palmitoylation and biological behaviors of esophageal squamous cell carcinoma (ESCC) cells and the clinical implications.@*METHODS@#The expression levels of IFNGR1 protein in ESCC cell lines KYSE30 and KYSE70 were detected using Western blotting at 24 and 48 h after Pg infection, and 2-BP was used to detect IFNGR1 palmitoylation in the cells. KYSE70 cells with wild-type IFNGR1 (IFNGR1-WT cells) and with IFNGR1-C122A palmitoylation site mutation induced by site-specific mutagenesis (IFNGR1-C122A cells) were both infected with Pg, and the changes in palmitoylation of IFNGR1-C122A were analyzed using immunofluorescence and Click-iT assays. The changes in proliferation, migration and invasion ability of the infected cells were evaluated using plate cloning assay, scratch assay and Transwell assay, and IFNGR1 co-localization with lysosomal marker LAMP2 was dected using immunofluorescence assay. Immunohistochemistry was used to detect Pg infection and IFNGR1 protein expression in 50 ESCC tissues, and their correlation with the clinicopathological characteristics and survival outcomes of the patients was analyzed.@*RESULTS@#Pg infection down-regulated the protein expression of IFNGR1 in ESCC and promoted IFNGR1 palmitoylation at site 122. In IFNGR1-WT cells, Pg infection significantly enhanced cell proliferation, migration and invasion (P < 0.05). Similarly, Pg also significantly promoted proliferation, migration and invasion of IFNGR1-C122A cells, but to a lesser extent as compared with the wild-type cells (P < 0.05). Immunofluorescence assay showed that Pg and ZDHHC3 promoted IFNGR1 degradation within the lysosome. Immunohistochemical studies of the ESCC tissue samples showed a negative correlation between IFNGR1 and Pg expression, and a reduced IFNGR1 expression was correlated with a poorer survival outcome of the patient.@*CONCLUSION@#Pg infection enhances IFNGR1 palmitoylation to promote progression of ESCC, and elimination of Pg and inhibiting IFNGR1 palmitoylation may effectively control ESCC progression.


Subject(s)
Humans , Esophageal Neoplasms , Porphyromonas gingivalis , Lipoylation , Esophageal Squamous Cell Carcinoma , Lysosomes
2.
Journal of Southern Medical University ; (12): 637-643, 2023.
Article in Chinese | WPRIM | ID: wpr-986972

ABSTRACT

OBJECTIVE@#To explore the regulatory mechanism of human hepatocyte apoptosis induced by lysosomal membrane protein Sidt2 knockout.@*METHODS@#The Sidt2 knockout (Sidt2-/-) cell model was constructed in human hepatocyte HL7702 cells using Crispr-Cas9 technology.The protein levels of Sidt2 and key autophagy proteins LC3-II/I and P62 in the cell model were detected using Western blotting, and the formation of autophagosomes was observed with MDC staining.EdU incorporation assay and flow cytometry were performed to observe the effect of Sidt2 knockout on cell proliferation and apoptosis.The effect of chloroquine at the saturating concentration on autophagic flux, proliferation and apoptosis of Sidt2 knockout cells were observed.@*RESULTS@#Sidt2-/- HL7702 cells were successfully constructed.Sidt2 knockout significantly inhibited the proliferation and increased apoptosis of the cells, causing also increased protein expressions of LC3-II/I and P62(P < 0.05) and increased number of autophagosomes.Autophagy of the cells reached a saturated state following treatment with 50 μmol/L chloroquine, and at this concentration, chloroquine significantly increased the expressions of LC3B and P62 in Sidt2-/- HL7702 cells.@*CONCLUSION@#Sidt2 gene knockout causes dysregulation of the autophagy pathway and induces apoptosis of HL7702 cells, and the latter effect is not mediated by inhibiting the autophagy-lysosomal pathway.


Subject(s)
Humans , Lysosome-Associated Membrane Glycoproteins/metabolism , Autophagy , Apoptosis , Hepatocytes , Lysosomes/metabolism , Chloroquine/pharmacology , Nucleotide Transport Proteins/metabolism
3.
Chinese Journal of Medical Genetics ; (6): 711-717, 2023.
Article in Chinese | WPRIM | ID: wpr-981813

ABSTRACT

OBJECTIVE@#To explore the clinical features, lysosomal enzymatic [acid α-glucosidase (GAA)] activities and genetic variants in a child with late-onset Pompe disease (LOPD).@*METHODS@#Clinical data of a child who had presented at the Genetic Counseling Clinic of West China Second University Hospital in August 2020 was retrospectively analyzed. Blood samples were collected from the patient and her parents for the isolation of leukocytes and lymphocytes as well as DNA extraction. The activity of lysosomal enzyme GAA in leukocytes and lymphocytes was analyzed with or without addition of inhibitor of GAA isozyme. Potential variants in genes associated with neuromuscular disorders were analyzed, in addition with conservation of the variant sites and protein structure. The remaining samples from 20 individuals undergoing peripheral blood lymphocyte chromosomal karyotyping were mixed and used as the normal reference for the enzymatic activities.@*RESULTS@#The child, a 9-year-old female, had featured delayed language and motor development from 2 years and 11 months. Physical examination revealed unstable walking, difficulty in going upstairs and obvious scoliosis. Her serum creatine kinase was significantly increased, along with abnormal electromyography, whilst no abnormality was found by cardiac ultrasound. Genetic testing revealed that she has harbored compound heterozygous variants of the GAA gene, namely c.1996dupG (p.A666Gfs*71) (maternal) and c.701C>T (p.T234M) (paternal). Based on the guidelines from the American College of Medical Genetics and Genomics, the c.1996dupG (p.A666Gfs*71) was rated as pathogenic (PVS1+PM2_Supporting+PM3), whilst the c.701C>T (p.T234M) was rated as likely pathogenic (PM1+PM2_Supporting+PM3+PM5+PP3). The GAA in the leukocytes from the patient, her father and mother were respectively 76.1%, 91.3% and 95.6% of the normal value without the inhibitor, and 70.8%, 112.9% and 128.2% of the normal value with the inhibitor, whilst the activity of GAA in their leukocytes had decreased by 6 ~ 9 times after adding the inhibitor. GAA in lymphocytes of the patient, her father and mother were 68.3%, 59.0% and 59.5% of the normal value without the inhibitor, and 41.0%, 89.5% and 57.7% of the normal value with the inhibitor, the activity of GAA in lymphocytes has decreased by 2 ~ 5 times after adding the inhibitor.@*CONCLUSION@#The child was diagnosed with LOPD due to the c.1996dupG and c.701C>T compound heterozygous variants of the GAA gene. The residual activity of GAA among LOPD patients can range widely and the changes may be atypical. The diagnosis of LOPD should not be based solely on the results of enzymatic activity but combined clinical manifestation, genetic testing and measurement of enzymatic activity.


Subject(s)
Humans , Child , Male , Female , Glycogen Storage Disease Type II/pathology , Retrospective Studies , alpha-Glucosidases/genetics , Mothers , Lysosomes/pathology , Mutation
4.
Journal of Zhejiang University. Science. B ; (12): 19-41, 2022.
Article in English | WPRIM | ID: wpr-929037

ABSTRACT

Autophagy is an intracellular degradation process that maintains cellular homeostasis. It is essential for protecting organisms from environmental stress. Autophagy can help the host to eliminate invading pathogens, including bacteria, viruses, fungi, and parasites. However, pathogens have evolved multiple strategies to interfere with autophagic signaling pathways or inhibit the fusion of autophagosomes with lysosomes to form autolysosomes. Moreover, host cell matrix degradation by different types of autophagy can be used for the proliferation and reproduction of pathogens. Thus, determining the roles and mechanisms of autophagy during pathogen infections will promote understanding of the mechanisms of pathogen‍‒‍host interactions and provide new strategies for the treatment of infectious diseases.


Subject(s)
Autophagy , Bacteria , Host-Pathogen Interactions , Lysosomes , Signal Transduction
5.
Acta Physiologica Sinica ; (6): 137-142, 2021.
Article in Chinese | WPRIM | ID: wpr-878243

ABSTRACT

Rapamycin (Rap) is an immunosuppressant, which is mainly used in the anti-rejection of organ transplantation. Meanwhile, it also shows great potential in the fields of anticancer, neuroprotection and anti-aging. Rap can inhibit the activity of mammalian target of Rap (mTOR). It activates the transcription factor EB (TFEB) to up-regulate lysosomal function and eliminates the inhibitory effect of mTOR on ULK1 (unc-51 like autophagy activating kinase 1) to promote autophagy. Recent research showed that Rap can directly activate the lysosomal cation channel TRPML1 in an mTOR-independent manner. TRPML1 activation releases lysosomal calcium. Calcineurin functions as the sensor of the lysosomal calcium signal and activates TFEB, thus promoting lysosome function and autophagy. This finding has greatly broadened and deepened our understanding of the pharmacological roles of Rap. In this review, we briefly introduce the canonical Rap-mTOR-ULK1/TFEB signaling pathway, and then discuss the discovery of TRPML1 as a new target of Rap and the pharmacological potential of this novel Rap-TRPML1-Calcineurin-TFEB pathway.


Subject(s)
Autophagy , Calcium/metabolism , Calcium Channels , Lysosomes/metabolism , Signal Transduction , Sirolimus
6.
International Journal of Oral Science ; (4): 34-34, 2020.
Article in English | WPRIM | ID: wpr-880850

ABSTRACT

Epithelial-mesenchymal transition (EMT) is involved in both physiological and pathological processes. EMT plays an essential role in the invasion, migration and metastasis of tumours. Autophagy has been shown to regulate EMT in a variety of cancers but not in head and neck squamous cell carcinoma (HNSCC). Herein, we investigated whether autophagy also regulates EMT in HNSCC. Analyses of clinical data from three public databases revealed that higher expression of fibronectin-1 (FN1) correlated with poorer prognosis and higher tumour pathological grade in HNSCC. Data from SCC-25 cells demonstrated that rapamycin and Earle's balanced salt solution (EBSS) promoted autophagy, leading to increased FN1 degradation, while 3-methyladenine (3-MA), bafilomycin A1 (Baf A1) and chloroquine (CQ) inhibited autophagy, leading to decreased FN1 degradation. On the other hand, autophagic flux was blocked in BECN1 mutant HNSCC Cal-27 cells, and rapamycin did not promote autophagy in Cal-27 cells; also in addition, FN1 degradation was inhibited. Further, we identified FN1 degradation through the lysosome-dependent degradation pathway using the proteasome inhibitor MG132. Data from immunoprecipitation assays also showed that p62/SQSTM1 participated as an autophagy adapter in the autophagy-lysosome pathway of FN1 degradation. Finally, data from immunoprecipitation assays demonstrated that the interaction between p62 and FN1 was abolished in p62 mutant MCF-7 and A2780 cell lines. These results indicate that autophagy significantly promotes the degradation of FN1. Collectively, our findings clearly suggest that FN1, as a marker of EMT, has adverse effects on HNSCC and elucidate the autophagy-lysosome degradation mechanism of FN1.


Subject(s)
Female , Humans , Autophagy , Cell Line, Tumor , Fibronectins , Lysosomes/metabolism , Ovarian Neoplasms , Sequestosome-1 Protein/metabolism , Squamous Cell Carcinoma of Head and Neck
7.
China Journal of Chinese Materia Medica ; (24): 5495-5503, 2020.
Article in Chinese | WPRIM | ID: wpr-878786

ABSTRACT

Orthogonal experiments were used to optimize the process parameters of curcumin TPP-PEG-PCL nanomicelles; the particle size, electric potential and morphology under the electron microscope were systematically detected for the curcumin TPP-PEG-PCL nanomicelles; and the stability and in vitro release of the curcumin TPP-PEG-PCL nanomicelles were investigated. With DID fluorescent dye as the fluorescent probe, flow cytometry was used to study the uptake of nanomicelles by breast cancer cells, and laser confocal microscopy was used to study the mitochondrial targeting and lysosomal escape functions of nanomicelles. Under the same dosage conditions, the effect of curcumin TPP-PEG-PCL nanomicelles on promoting the apoptosis of breast cancer cells was evaluated. The optimal particle size of curcumin TPP-PEG-PCL nanomicelle was(17.3±0.3) nm, and the Zeta potential was(14.6±2.6) mV in orthogonal test. Under such conditions, the micelle appeared as regular spheres under the transmission electron microscope. Fluorescence test results showed that TPP-PEG-PCL nanomicelles can promote drug uptake by tumor cells, escape from lysosomal phagocytosis, and target the mitochondria. The cell survival rate and Hoechst staining positive test results showed that curcumin TPP-PEG-PCL nanomicelles had a good effect on promoting apoptosis of breast cancer cells. The curcumin TPP-PEG-PCL micelles can significantly reduce the mitochondrial membrane potential of breast cancer cells, increase the release of cytochrome C, significantly increase the expression of pro-apoptotic protein Bcl-2 and reduce the expression of anti-apoptotic Bax protein. These test results were significantly better than those of curcumin PEG-PCL nanomicelles and curcumin, with statistically significant differences. The results revealed that curcumin TPP-PEG-PCL nanomicelles can well target breast cancer cell mitochondria and escape from the lysosomal capture, thereby enhancing the drug's role in promoting tumor cell apoptosis.


Subject(s)
Humans , Apoptosis , Breast Neoplasms/drug therapy , Cell Line, Tumor , Curcumin/pharmacology , Lysosomes , Micelles , Mitochondria , Phosphatidylethanolamines , Polyethylene Glycols
8.
Rev. med. (Säo Paulo) ; 98(3): 222-225, maio-jun. 2019. ilus
Article in Portuguese | LILACS | ID: biblio-1009752

ABSTRACT

Indivíduos afetados pela síndrome de Chediak-Higashi se apresentam clinicamente com diversas alterações orgânicas, a partir de mutações que afetam a função fagocitária e do gene regulador do tráfego lisossomal. A forma acelerada da síndrome cursa com uma série de alterações hematológicas e sistêmicas, sendo grave e usualmente incorrendo em morte precoce. O objetivo do artigo foi realizar uma pesquisa na literatura acerca da fase acelerada da síndrome de Chediak-Higashi. Foi realizada a busca nas bases de dados: PubMed, The Cochrane Library e SciELO, por estudos em humanos publicados em inglês, espanhol ou português nos últimos 15 anos. Devido a seu nível de gravidade, a síndrome de Chediak-Higashi demonstra a importância de seu conhecimento pelos profissionais médicos a fim de reduzir o número de subdiagnósticos, consequentemente diminuindo as taxas de mortalidade e promovendo melhora na qualidade de vida de seus portadores.


Individuals affected by Chediak-Higashi syndrome present themselves clinically with several organic alterations, from mutations that affect the phagocytic and the functions of the lysosomal traffic regulator gene. The accelerated form of the syndrome presents with a series of hematological and systemic alterations, being serious and usually incurring in early death. The objective of this paper was to develop a literature review about the accelerated phase of Chediak-Higashi syndrome. The source was developed at the following databases: PubMed, The Cochrane Library, and SciELO, being included human studies published in English, Spanish or Portuguese in the last 15 years. Due to its severity, Chediak-Higashi syndrome demonstrates the importance of its knowledge by medical professionals in order to reduce the number of underdiagnostics, consequently reducing mortality rates and promoting improvement in the quality of life of the patients.


Subject(s)
Chediak-Higashi Syndrome , Hypopigmentation , Lysosomes
9.
Neuroscience Bulletin ; (6): 336-346, 2019.
Article in English | WPRIM | ID: wpr-775445

ABSTRACT

We have previously reported that Cystatin C (CysC) is a pivotal mediator in the neuroprotection induced by hyperbaric oxygen (HBO) preconditioning; however, the underlying mechanism and how CysC changes after stroke are not clear. In the present study, we demonstrated that CysC expression was elevated as early as 3 h after reperfusion, and this was further enhanced by HBO preconditioning. Concurrently, LC3-II and Beclin-1, two positive-markers for autophagy induction, exhibited increases similar to CysC, while knockdown of CysC blocked these elevations. As a marker of autophagy inhibition, p62 was downregulated by HBO preconditioning and this was blocked by CysC knockdown. Besides, the beneficial effects of preserving lysosomal membrane integrity and enhancing autolysosome formation induced by HBO preconditioning were abolished in CysC rats. Furthermore, we demonstrated that exogenous CysC reduced the neurological deficits and infarct volume after brain ischemic injury, while 3-methyladenine partially reversed this neuroprotection. In the present study, we showed that CysC is biochemically and morphologically essential for promoting autophagic flux, and highlighted the translational potential of HBO preconditioning and CysC for stroke treatment.


Subject(s)
Animals , Male , Autophagy , Physiology , Beclin-1 , Metabolism , Brain , Metabolism , Pathology , Brain Ischemia , Metabolism , Pathology , Therapeutics , Cystatin C , Genetics , Metabolism , Disease Models, Animal , Gene Expression , Gene Knockdown Techniques , Hyperbaric Oxygenation , Lysosomes , Metabolism , Pathology , Microtubule-Associated Proteins , Metabolism , Neurons , Metabolism , Pathology , Neuroprotection , Physiology , Oxygen , Therapeutic Uses , Random Allocation , Rats, Sprague-Dawley , Rats, Transgenic , Reperfusion Injury , Metabolism , Pathology , Therapeutics
10.
Chinese Journal of Traumatology ; (6): 93-98, 2019.
Article in English | WPRIM | ID: wpr-771633

ABSTRACT

The clinical treatment of joint contracture due to immobilization remains difficult. The pathological changes of muscle tissue caused by immobilization-induced joint contracture include disuse skeletal muscle atrophy and skeletal muscle tissue fibrosis. The proteolytic pathways involved in disuse muscle atrophy include the ubiquitin-proteasome-dependent pathway, caspase system pathway, matrix metalloproteinase pathway, Ca-dependent pathway and autophagy-lysosomal pathway. The important biological processes involved in skeletal muscle fibrosis include intermuscular connective tissue thickening caused by transforming growth factor-β1 and an anaerobic environment within the skeletal muscle leading to the induction of hypoxia-inducible factor-1α. This article reviews the progress made in understanding the pathological processes involved in immobilization-induced muscle contracture and the currently available treatments. Understanding the mechanisms involved in immobilization-induced contracture of muscle tissue should facilitate the development of more effective treatment measures for the different mechanisms in the future.


Subject(s)
Humans , Atrophy , Autophagy , Calcium , Metabolism , Caspases , Metabolism , Connective Tissue , Metabolism , Pathology , Contracture , Metabolism , Pathology , Therapeutics , Fibrosis , Immobilization , Joints , Lysosomes , Metabolism , Matrix Metalloproteinases , Metabolism , Muscle, Skeletal , Metabolism , Pathology , Proteasome Endopeptidase Complex , Metabolism , Proteolysis , Signal Transduction , Physiology , Transforming Growth Factor beta1 , Metabolism , Ubiquitin , Metabolism
11.
Clinical and Experimental Reproductive Medicine ; : 206-210, 2019.
Article in English | WPRIM | ID: wpr-785637

ABSTRACT

Mucopolysaccharidosis type II (MPS II) is a rare X-linked recessive lysosomal storage disease caused by mutation of the iduronate-2-sulfatase gene. The mutation results in iduronate-2-sulfatase deficiency, which causes the progressive accumulation of heparan sulfate and dermatan sulfate in cellular lysosomes. The phenotype, age of onset, and symptoms of MPS II vary; accordingly, the disease can be classified into either the early-onset type or the late-onset type, depending on the age of onset and the severity of the symptoms. In patients with severe MPS II, symptoms typically first appear between 2 and 5 years of age. Patients with severe MPS II usually die in the second decade of life although some patients with less severe disease have survived into their fifth or sixth decade. Here, we report the establishment of a preimplantation genetic diagnosis (PGD) strategy using multiplex nested polymerase chain reaction, direct sequencing, and linkage analysis. Unaffected embryos were selected via the diagnosis of a single blastomere, and a healthy boy was delivered by a female carrier of MPS II. This is the first successful application of PGD in a patient with MPS II in Korea


Subject(s)
Female , Humans , Male , Age of Onset , Blastomeres , Dermatan Sulfate , Diagnosis , Embryonic Structures , Heparitin Sulfate , Korea , Lysosomal Storage Diseases , Lysosomes , Mucopolysaccharidoses , Mucopolysaccharidosis II , Multiplex Polymerase Chain Reaction , Parturition , Phenotype , Polymerase Chain Reaction , Preimplantation Diagnosis , Prostaglandins D
12.
Kidney Research and Clinical Practice ; : 318-325, 2019.
Article in English | WPRIM | ID: wpr-759009

ABSTRACT

BACKGROUND: Autophagy is a highly balanced process in which lysosomes remove aged and damaged organelles and cellular proteins. Autophagy is essential to maintain homeostasis in the kidneys. METHODS: Using human renal tubule cells HK-2, we assessed the impact of high glucose (HG) on autophagy. We also evaluated the capability of sulforaphane (SFN) to protect the HK-2 cells from HG-induced apoptosis by modulating autophagy. RESULTS: SFN modulated autophagy and decreased apoptosis in the HK-2 cells that were cultured in 250 mM glucose medium for two days. The reactive oxygen species (ROS) levels increased, as expected, in the cells cultured in the 250 mM glucose medium. However, the SFN decreased the ROS levels in the HK-2 cells. The overexpression of heme oxygenase-1 (HO-1) by SFN decreased the expression of LC3 and beclin-1. LC3 and beclin-1 were involved in the downregulation of caspase-3 that was observed in the HG-induced cells. CONCLUSION: The activation of nuclear factor E2-related factor 2 (Nrf2)–HO–1 inhibited ROS expression and subsequently attenuated autophagy and cell apoptosis after HG injury was decreased. HG injury led to the activation of autophagy and HO-1 in order to combat oxidative stress and protect against cell apoptosis. Therefore, HO-1 activation can prevent ROS development and oxidative stress during HG injury, which considerably decreases autophagy and apoptosis.


Subject(s)
Humans , Apoptosis , Autophagy , Caspase 3 , Diabetic Nephropathies , Down-Regulation , Glucose , Heme Oxygenase-1 , Homeostasis , Kidney , Lysosomes , NF-E2-Related Factor 2 , Organelles , Oxidative Stress , Reactive Oxygen Species
13.
Journal of Peking University(Health Sciences) ; (6): 893-899, 2019.
Article in Chinese | WPRIM | ID: wpr-941905

ABSTRACT

OBJECTIVE@#To evaluate the change of cell surface CXC chemokine receptor 4 (CXCR4) expression of stem cells from apical papilla (SCAP) after the inhibition of endocytotic pathway, thus to provide experimental basis for the mechanism of SCAP migration.@*METHODS@#The immunofluorescence analysis was conducted to examine the co-expression of CXCR4 and endocytotic compartments, including early endosomes, recycling endosomes and lysosomes in SCAP. Several Rab proteins were applied as markers of organelles in the endocytotic pathway, including Rab5 for early endosomes, Rab11A for recycling endosomes, and Lamp1 for lysosomes. The co-localization of CXCR4 with these endodontic compartments was further observed by proximity ligation assay (PLA). SCAP was treated with two kinds of endocytotic inhibitors, Blebbistatin and Dynasore, at a concentration of 80 μmol/L, respectively. The conditioning time was 1 hour. Flow cytometry was carried out to evaluate the proportion of SCAP that expressed CXCR4 on cell surface. The data were analysed by analysis of variance (ANOVA).@*RESULTS@#The red staining of CXCR4 on immunofluorescence confocal microscopy predominantly overlapped with the green staining of Rab5 and Rab11A, and partly overlapped with Lamp1. It indicated that most CXCR4 molecules were located in early endosomes and recycling endosomes, and some were located in lysosomes. The PLA results revealed that the co-localizaiton of CXCR4 with endocytotic compartments could be observed in early endosomes, recycling endosomes and lysosomes. According to the results of flow cytometry, the proportion of SCAP that expressed CXCR4 on cell surface was as low as 0.13%±0.10%. After the inhibition of endocytosis by pretreating the cells with the following two inhibitors, Blebbistatin and Dynasore, the percentage of SCAP that positively expressed CXCR4 on cell surface was significantly increased to 13.34%±1.31% in Blebbistatin group and 4.03%±0.92% in Dynasore group (F=16.721, P<0.001). Moreover, the number of SCAP that expressed CXCR4 on cell surface in Blebbistatin group was significantly higher than that in Dynasore group (P<0.001).@*CONCLUSION@#The inhibition of endocytotic pathway could increase the number of SCAP that expressed CXCR4 on cell surface, and provide potency for the migration of SCAP.


Subject(s)
Endocytosis , Endosomes , Lysosomes , Receptors, CXCR4 , Stem Cells
14.
São Paulo; s.n; s.n; 2018. 181 p. ilus, graf.
Thesis in English | LILACS | ID: biblio-967948

ABSTRACT

Lipofuscin is an autofluorescent pigment progressively accumulated during cellular aging, in several tissues, such as heart, muscle and retina, especially in the postmitotic period. That phenomenon may result from oxidative stress, when biomolecules and organelles (mainly mitochondria) are damaged, generating non-degradable products inside lysosomes. Lipofuscin can be photosensitized, promoting photoxidative processes in cellular components. Many studies on lipofuscin were made using the human retinal pigment epithelial cells, but very little is known about lipofuscin from human skin. In this work we investigated the photoinduced formation (UVA and visible light) of lipofuscin and the consequence of its photosensitization by visible light. We also established an efficient protocol for the induction of lipofuscinogenesis, through specific damage in mitochondria and lysosomes. Cells that accumulated lipofuscin, after exposure to UVA and blue light, became sensitive to visible light (400-750 nm). We characterized the absorption and fluorescence emission of lipofuscin, as well as its fluorescence lifetime through the time resolved fluorescence microscopy (FLIM). We observed that lipofuscin in keratinocytes has absorption maximum in the blue region of light spectrum (420-450 nm), and maximum emission in the red. When photosensitized at 466 nm, lipofuscinloaded HaCaT cells had reduced cell viability, which was related with singlet oxygen generation, accumulated 8-oxo-dG premutagenic lesions and breaks in the DNA strand. Besides, we investigated the efficiency of different wavelengthsin visible light spectrum (408, 466, 522 and 650 nm) to promote lipofuscin formation due to damages in both mitochondria and lysosomes. Blue (408 and 466 nm) and green light (522 nm), but not red light (650 nm), promoted damage in mitochondria (membrane and DNA integrity) and lysosomes (membrane integrity and autophagic activity), effectively inducing lipofuscinogenesis. Thus, in addition to UVA, visible spectrum itself increases the sensitivity of keratinocytes to the visible light, through the generation of lipofuscin. Finally, we tested the carcinogenic potential of high-energy blue light (408 nm), by chronically irradiating HaCaT cells. For the first time in the literature, the formation of pyrimidine cyclobutane (CPD) dimers in the nuclear DNA of HaCaT cells was observed immediately or after several cycles of irradiation at 408 nm. We identified four major changes involved with the process of malignant transformation: genomic instability, decrease in the expression of tumor suppressor protein p16INK4a, increase in the proliferation rate and resistance to UVA-induced apoptosis


A lipofuscina é um pigmento autofluorescente acumulado progressivamente durante o envelhecimento celular em diversos tecidos, como o músculo cardíaco e retina, principalmente no período pós-mitótico. Esse fenômeno pode ocorrer em decorrência do estresse oxidativo, quando biomoléculas e organelas (principalmente mitocôndrias) sofrem danos, gerando produtos não degradáveis no interior dos lisossomos. A lipofuscina pode ser fotossensibilizada promovendo processos fotoxidativos nos componentes celulares. Muitos estudos de lipofuscina foram feitos em células do epitélio pigmentar da retina de olho humano, mas conhece-se muito pouco sobre a lipofuscina de pele humana. Neste trabalho nós investigamos a formação fotoinduzida (UVA e luz visível) de lipofuscina e as consequências da sua fotossensibilização pela luz visível. Nós também estabelecemos protocolos eficazes na indução de lipofuscinogênese, por meio de dano específico em mitocôndrias e lisossomos. Células que acumularam lipofuscina, após exposição à UVA ou luz azul, tornaram-se sensíveis à luz visível (400-750 nm). Caracterizamos as propriedades de absorção e de emissão da lipofuscina e seu tempo de vida de fluorescência, utilizando a microscopia de fluorescência resolvida no tempo (FLIM). Observamos que lipofuscina em queratinócitos tem máximo de absorção na região do azul (420-450 nm), com emissão máxima de fluorescência no vermelho. As células HaCaT carregadas com lipofuscina efotossensibilizadas no visível, tiveram redução da viabilidade celular, que foi relacionada com a geração de oxigênio singlete, bem como acumularam lesões pré-mutagênicas 8-oxo-dG e quebras na fita de DNA. Também, investigamos a eficiência de diferentes comprimentos de onda da luz visível (408, 466, 522 e 650 nm) em promover a formação de lipofuscina em consequência de lesões em mitocôndrias e lisossomos. Tanto a luz azul (408 e 466 nm) quanto a luz verde (522 nm), mas não vermelha (650 nm) promoveram dano em mitocôndrias (integridade de membrana e DNA) e lisossomos (integridade de membrana e atividade autofágica), induzindo eficientemente lipofuscinogênese. Logo, além de UVA, o próprio espectro do visível aumenta a sensibilidade de queratinócitos à luz visível, através da geração de lipofuscina. Por fim, testamos o potencial carcinogênico da luz azul de alta energia (408 nm), irradiando células HaCaT cronicamente. Identificamos quatro mudanças principais envolvidas com o processo de transformação maligna: instabilidade genômica, redução da expressão de proteína supressora de tumor p16INK4a, aumento da taxa de proliferação, e resistência à apoptose. Além disso, a formação de dímeros de pirimidina ciclobutano (CPD) no DNA nuclear de células HaCaT logo após ou depois de vários ciclos de irradiação com 408 nm foi observada pela primeira vez na literatura


Subject(s)
Skin , Keratinocytes/classification , Lipofuscin/adverse effects , Ultraviolet Rays/adverse effects , Light/adverse effects , Lipofuscin , Lysosomes
15.
Environmental Health and Toxicology ; : 2018009-2018.
Article in English | WPRIM | ID: wpr-786746

ABSTRACT

A method of rapidly decaying livestock carcasses is sought through Corine glutamicum, and furthermore, lysosomes are used to remove toxic microorganisms from livestock carcasses. The landfill was constructed on a laboratory scale. Optimized growth conditions of C. glutamicum that could quickly decay livestock carcasses were determined. Lysosomes were extracted from egg whites and used to treat contaminated soil to confirm their antimicrobial activities. Condition of C. glutamicum was activated, regardless both anaerobic and aerobic conditions, soil exists and, to be close to the optimum conditions as possible temperatures, moisture content was about 1/10 of the culture. Lysosomes were found to be effective in clearing soil contamination. C. glutamicum can accelerate the decay of livestock carcasses. A combination of C. glutamicum and lysomes could be used to treat soil contamination caused by decomposition of livestock.


Subject(s)
Burial , Corynebacterium glutamicum , Corynebacterium , Egg White , Livestock , Lysosomes , Methods , Soil , Waste Disposal Facilities
16.
Protein & Cell ; (12): 1013-1026, 2018.
Article in English | WPRIM | ID: wpr-757971

ABSTRACT

Lysosomes are degradation and signaling centers within the cell, and their dysfunction impairs a wide variety of cellular processes. To understand the cellular effect of lysosome damage, we screened natural small-molecule compounds that induce lysosomal abnormality using Caenorhabditis elegans (C. elegans) as a model system. A group of vobasinyl-ibogan type bisindole alkaloids (ervachinines A-D) were identified that caused lysosome enlargement in C. elegans macrophage-like cells. Intriguingly, these compounds triggered cell death in the germ line independently of the canonical apoptosis pathway. In mammalian cells, ervachinines A-D induced lysosomal enlargement and damage, leading to leakage of cathepsin proteases, inhibition of autophagosome degradation and necrotic cell death. Further analysis revealed that this ervachinine-induced lysosome damage and lysosomal cell death depended on STAT3 signaling, but not RIP1 or RIP3 signaling. These findings suggest that lysosome-damaging compounds are promising reagents for dissecting signaling mechanisms underlying lysosome homeostasis and lysosome-related human disorders.


Subject(s)
Animals , Humans , Alkaloids , Pharmacology , Caenorhabditis elegans , Cell Biology , Metabolism , Cell Death , Cell Survival , HeLa Cells , Lysosomes , Pathology , STAT3 Transcription Factor , Metabolism , Signal Transduction
17.
Protein & Cell ; (12): 640-651, 2018.
Article in English | WPRIM | ID: wpr-756931

ABSTRACT

We recently reported an unconventional mechanism by which miRNAs inhibit HIV-1 viral production. This occurs when miRNAs bind nonspecifically to the viral structural protein Gag, interfering with viral RNA-mediated Gag assembly at the plasma membrane. Consequently, misassembled viral complexes are redirected into the endocytic pathway where they are delivered to lysosomes for degradation. In this study, we demonstrate that autophagy is a critical mediator of the viral degradation pathway and that this pathway is not HIV-1 specific. Misassembled viral complexes were found to colocalize extensively with LC3 and p62 in late endosomes/lysosomes, demonstrating a convergence of autophagy with functional degradative compartments. Knocking down autophagosome formation machineries reduced this convergence, while treatment with autophagy-inducer rapamycin enhanced the convergence. Furthermore, similar autophagy-dependent nonspecific miRNA inhibition of murine leukemia virus (MLV) assembly was shown. Overall, these results reveal autophagy as a crucial regulator of the retroviral degradation pathway in host cells initiated by nonspecific miRNA-Gag interactions. These findings could have significant implications for understanding how cells may regulate retroviral complex assembly by miRNA expression and autophagy, and raise the possibility that similar regulations can occur in other biological contexts.


Subject(s)
Humans , Autophagy , Cell Membrane , Metabolism , Gene Products, gag , Genetics , Metabolism , HEK293 Cells , HIV-1 , Metabolism , Lysosomes , Metabolism , MicroRNAs , Genetics , Metabolism , Virus Assembly
18.
The Korean Journal of Parasitology ; : 409-418, 2018.
Article in English | WPRIM | ID: wpr-742283

ABSTRACT

Acanthamoeba spp. are free-living protozoa that are opportunistic pathogens for humans. Cysteine proteases of Acanthamoeba have been partially characterized, but their biochemical and functional properties are not clearly understood yet. In this study, we isolated a gene encoding cysteine protease of A. castellanii (AcCP) and its biochemical and functional properties were analyzed. Sequence analysis of AcCP suggests that this enzyme is a typical cathepsin L family cysteine protease, which shares similar structural characteristics with other cathepsin L-like enzymes. The recombinant AcCP showed enzymatic activity in acidic conditions with an optimum at pH 4.0. The recombinant enzyme effectively hydrolyzed human proteins including hemoglobin, albumin, immunoglobuins A and G, and fibronectin at acidic pH. AcCP mainly localized in lysosomal compartment and its expression was observed in both trophozoites and cysts. AcCP was also identified in cultured medium of A. castellanii. Considering to lysosomal localization, secretion or release by trophozoites and continuous expression in trophozoites and cysts, the enzyme could be a multifunctional enzyme that plays important biological functions for nutrition, development and pathogenicity of A. castellanii. These results also imply that AcCP can be a promising target for development of chemotherapeutic drug for Acanthamoeba infections.


Subject(s)
Humans , Acanthamoeba castellanii , Acanthamoeba , Cathepsin L , Cathepsins , Cysteine Proteases , Cysteine , Fibronectins , Genes, vif , Hydrogen-Ion Concentration , Lysosomes , Sequence Analysis , Trophozoites , Virulence
19.
Journal of the Korean Child Neurology Society ; (4): 123-127, 2018.
Article in English | WPRIM | ID: wpr-728852

ABSTRACT

Neuronal ceroid lipofuscinoses (NCLs) are inherited neurodegenerative disorders, which are caused by the accumulation of lipopigment in lysosomes. Variant forms of late infantile NCLs (vLINCLs) characterized by a later onset of seizures and visual impairment (3–8 years) than in the classic form (2–4 years) are caused by mutations of the gene encoding ceroid lipofuscinosis neuronal protein 6 (CLN6). In a girl with progressive myoclonus epilepsy, we found heterozygous variants of CLN6 (NM_017882.2; NP_060352.1): c.296A>G (p.Lys99Arg) and c.307C>T (p.Arg103Trp). They were identified with whole-exome sequencing and verified with Sanger sequencing. At 7 years and 9 months, our patient had developed multiple types of seizures, prominent myoclonus with photosensitivity, regression in motor and language skills, pyramidal and extrapyramidal signs, and brain atrophy in brain images, all of which were progressive and were compatible with vLINCLs. However, this first Korean report shows no visual impairment, which resembles the previously reported Japanese case.


Subject(s)
Child , Female , Humans , Asian People , Atrophy , Brain , Ceroid , Lysosomes , Myoclonic Epilepsies, Progressive , Myoclonus , Neurodegenerative Diseases , Neuronal Ceroid-Lipofuscinoses , Neurons , Seizures , Vision Disorders
20.
Environmental Health and Toxicology ; : e2018009-2018.
Article in English | WPRIM | ID: wpr-714901

ABSTRACT

A method of rapidly decaying livestock carcasses is sought through Corine glutamicum, and furthermore, lysosomes are used to remove toxic microorganisms from livestock carcasses. The landfill was constructed on a laboratory scale. Optimized growth conditions of C. glutamicum that could quickly decay livestock carcasses were determined. Lysosomes were extracted from egg whites and used to treat contaminated soil to confirm their antimicrobial activities. Condition of C. glutamicum was activated, regardless both anaerobic and aerobic conditions, soil exists and, to be close to the optimum conditions as possible temperatures, moisture content was about 1/10 of the culture. Lysosomes were found to be effective in clearing soil contamination. C. glutamicum can accelerate the decay of livestock carcasses. A combination of C. glutamicum and lysomes could be used to treat soil contamination caused by decomposition of livestock.


Subject(s)
Burial , Corynebacterium glutamicum , Corynebacterium , Egg White , Livestock , Lysosomes , Methods , Soil , Waste Disposal Facilities
SELECTION OF CITATIONS
SEARCH DETAIL